Experimental Data for Goldfeld's Conjecture over Function Fields
نویسندگان
چکیده
This paper presents empirical evidence supporting Goldfeld’s conjecture on the average analytic rank of a family of quadratic twists of a fixed elliptic curve in the function field setting. In particular, we consider representatives of the four classes of non-isogenous elliptic curves over Fq(t) with (q, 6) = 1 possessing two places of multiplicative reduction and one place of additive reduction. The case of q = 5 provides the largest data set as well as the most convincing evidence that the average analytic rank converges to 1/2, which we also show is a lower bound following an argument of Kowalski. The data was generated via explicit computation of the L-function of these elliptic curves, and we present the key results necessary to implement an algorithm to efficiently compute the L-function of non-isotrivial elliptic curves over Fq(t) by realizing such a curve as a quadratic twist of a pullback of a ‘versal’ elliptic curve. We also provide a reference for our open-source library ELLFF, which provides all the necessary functionality to compute such L-functions, and additional data on analytic rank distributions as they pertain to the density conjecture.
منابع مشابه
Remarks about Uniform Boundedness of Rational Points over Function Fields
We prove certain uniform versions of the Mordell Conjecture and of the Shafarevich Conjecture for curves over function fields and their rational points.
متن کاملPro-p hom-form of the birational anabelian conjecture over sub-p-adic fields
We prove a Hom-form of the pro-p birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.
متن کاملConics over function fields and the Artin-Tate conjecture
We prove that the Hasse principle for conics over function fields is a simple consequence of a provable case of the Artin-Tate conjecture for surfaces over finite fields. Hasse proved that a conic over a global field has a rational point if and only if it has points over all completions of the global field, an instance of the so-called local-global or Hasse principle. The case of the rational n...
متن کاملThe Tate Conjecture for Powers of Ordinary Cubic Fourfolds over Finite Fields
Recently N. Levin proved the Tate conjecture for ordinary cubic fourfolds over finite fields. In this paper we prove the Tate conjecture for selfproducts of ordinary cubic fourfolds. Our proof is based on properties of so called polynomials of K3 type introduced by the author about a dozen years ago.
متن کاملOn the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields
We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if W is such a variety, then every piecewise polynomial function on W can be written as suprema of infima of polynomial functions on W . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 21 شماره
صفحات -
تاریخ انتشار 2012